产品详情
我公司提供多种,欢迎全国朋友咨询
| EL100 A2.1 | MX603-0308-613 |
| IC693PWR330 | PO916JS |
| 109-525-3201A-8 | AM0MBP001V000 |
| MVI56-MCM | 1771-CL |
| DAO01 | 22B-D012N104 |
| CM572 | P0916GG |
| EVF8212-E | 1C31127G01 |
| PM1253AL-6-3-Z03 | 1747-L511 |
| RS-520L | PC-A984-130 |
| 1FT6064-1AF71-3AG1 | ATCS-15 |
| SICOMP PC32-F | PS-01 |
| DSPC172 | 1500-24 |
| 140DAI74000 | TMCP700 W33378F |
| IC693CPU323 | MVI69-PDPMV1 |
| AS-B808-016 | DSDX452 |
| 3BSE008538R1 | 8540180000 |
| DIGIFAS7116 | 6KA9902/EL1/621 |
| KSD1-64 | DSQC346U |
| 1734-AENT | 803.65.00 BOARD |
| TK516 | 620-0041 |
| TR211 | DFP 21A |
| 3HAC17484-7/03 | HLDB3600FT33W |
| MFO-40CF | SPAD346C |
| FBM42 | ECPE84-0 |
| Adept 101 | 1770-XYC |
| MX-CS101-401 | BMXDDI1602 |
| CB06251 | GR63X55 |
| FBI10E | RD-023MS |
| CU313A | 2-822037-A |
| TSXAEY414 | IC670MDL740 |
形按傅立叶级数分解为基波和各次谐波,次谐波中的高次谐波具有很强的传播和干扰效应,将干扰输入供电系统和其他电气元件。变频器逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,针对GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM载频可达15kHz。同理,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而其中的高次谐波电流对负载产生直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。在专业的变频器维修中,因为谐波信号是一种看不见摸不着的东西,只能通过设备检测或者理论概念的分析得出结论,所以,对于变频器维修初学者来说,弄清楚谐波干扰的产生机理和传播方式是必不可少

工频UPS的效率一般在85%左右,相比高频92%左右的运行效率和模块化96%左右的运行效率,导致大量的能量损失。以400kW负载为例,工频机将比高频机年多耗电41万度,比模块化年多耗电近58万度。除此之外,工频UPS还有高谐波、低功率因数等导致配电线缆损耗增大等问题。因为工频机采用低频器件且配置输出变压器,致使UPS体积重量大大增加。以某品牌400kVA工频机和高频机对比,工频机重量是高频机的2.2倍,体积是高频机的1.5倍,在实际运输中可能存在机房门或者走道偏小、电梯载重不够、楼层承重不足等问题,有些情况下甚至需要用吊车装卸,然后破墙而入来安装工频UPS,大大增加了运输及成本。工频机和高频机的主要差异体现在整流器和变压器上。

工频机结构UPS技术出现在上世纪70年代,因其整流工作频率与电网频率一致而得名。受制于当时半导体技术发展,逆变器中IGBT器件耐压只能做到600V,故母线电压受限,逆变器输出电压不能做到380V;而且工频机逆变器是全桥电路,输出为三相火线,无法满足单相IT负载和三相四线制负载的需求,必须进行Δ-Y转换。为解决这些问题,厂家在工频机逆变器输出端加入了变压器用于升压和产生中线,以使输出电压满足负载的要求,这便是工频机内置变压器的真实目的。图-1所示为工频机的典型拓扑。而到上世纪90年代,第三代沟槽型IGBT面世,其耐压能力提升至1200V,促使了UPS技术的革新。通过整流侧高频升压电路将母线电压提升至700V左右。

定子绕组三角形运行的电动机,其每相绕组承受的相电压即电动机的额定电压(电源伐电压),若错接成星形,每相绕组上电压下降至原电压的1/3,电源电压为380伏,则相电压下降至0.58*380=220伏,导致电动机的转矩将减小到额定转矩的(1/3)=1/3,此时如果电动机仍带上额定负载运行为了克服负载的阻力矩,要求星形接法的转矩与三角形接法的转矩一样,这样势必造成电机定子电流增加,从而导致电机过载发热长时间运行同样会烧毁,功率因数和效率也会下降。
RINT-6411C ABB 现货库存 议价



